X
تبلیغات
آموزش ریاضی - آموزش احتمال

آموزش ریاضی

ریاضی دبیرستان- پیش دانشگاهی- کارشناسی

احتمال یکی از چندین کلمه ای است که برای بیان اتفاقات یا معلومات مشکوک به کار می رود. البته شانس، شرط بندی دیگر کلمات شبیه این، مفاهیمی مشابه احتمال را در ذهن ایجاد می کنند. در نظریه احتمال سعی بر ارائه مفهوم احتمال است.امروزه نظریه احتمال با بسیاری از شاخه های دیگر ریاضیات و بسیاری از حوزه های علوم طبیعی، تکنولوژی، و اقتصاد مرتبط است.


ملاحظات تاریخی

آغاز نظریه احتمال به اواسط قرن هفدهم باز می گردد. شرط بند با حرارتی با نام شوالیه دومره (de mere) حل مسئله ای را، که برایش مهم بود، از بلز پاسکال درخواست کرد.
img/daneshnameh_up/1/15/probability2005.jpg

شرط بند با معلوم بودن این مطلب که در یکی از مراحل میانی بازی، یکی از آنها دور و دیگری دور راه برده باشد، و ، طبق قرار قبلی، اولین کسی که دور را ببرد برنده کل بازی باشد. پاسکال راه حل خود را با پی یردو فرما که او نیز راه حلی برای این مسئله به دست آورد. درمیان گذاشت و راه حل سوم از کریستین هویگنس (1629ـ 1695) به دست آمد. مردان فرهیخته مزبور، اهمیت مسنله مزبور را در بررسی قوانین حاکم بر پیشامدهای تصادفی دریافتند. به این ترتیب، مفاهیم و روش های اولیه علمی جدید، از مساله های مربوط به بازی های شانسی گسترش یافت.
خیلی بعد، در قرن نوزدهم، توجه به سرعت افزاینده در علوم طبیعی، گسترش نظریه احتمال را به مواردی غیر از چهارچوب بازی های شانسی ضروری ساخت. گسترش مزبور رابطه ای تنگاتنگ با نام های ژاکوب برنولی (1654ـ1705)، آبراهام دوموآور (1667ـ1754)، پیرسیمون دولاپلاس (1749ـ 1827)، کارل فردریش گاوس (1777ـ 1855)، سیمون دنیس پواسون (1781ـ 1840)ف پافنونی لووبچ چبیشف (1821ـ1894)، آندری آندری ویچ مارکوف (1856ـ1922)، و در همین اواخر با اسامی الکساندر یاکوف لویچ خین چاین (1894ـ 1959) و اندری نیکولائویچ کولموگوروف (متولد 1903) داشته است.
تحقیق در پیشامدهای انبوه با بررسی قوانین حاکن بر پیشامدهای تصادفی مرتبط است. به عنوان مثال، تولید کالایی که موارد کاربرد روزانه دارد پیشامد انبوه و ظهور کالایی معیوب در میان آنها پیشامدی تصادفی است.

پیشامد

پیشامد E ، به مفهوم پیشامد تصادفی ، نتیجه آزمونی است که گرچه میتواند رخ دهد ولی این رخ داد ضروری نیست . یک آزمون می تواند مشاهده یا آزمایش باشد و با مجموعه ای از شرایطی که باید برقرار شوند و با استفاده از تکرارپذیری مشخص می شود . حالت های حدی نیز به عنوان پیشامد در نظر گرفته می شوند : پیشامدحتمی ، پیشامدی است که به طور قطع رخ می دهد و پیشامد ناممکن، که هیچ گاه رخ نمی دهد از این قبیل اند. به عنوان مثال در انداختن یک تاس پیشامد آمدن عدد 7 یک پیشامد ناممکن پیشامد آمدن عدد 1 تا6 یک پیشامدحتمی است.
پیشامدها را دو به هر ناسازگار می گوئیم اگر تنها یکی از آنها به عنوان نتیجه آزمون بتواند رخ دهد . به عنوان مثال در بیرون آوردن یک مهره از ظرفی که محتوی مهره های قرمز و سیاه است ، بیرون آوردن مهره قرمز و سیاه است ، بیرون آوردن مهره قرمز و بیرون آوردن مهره سیاه ، ناسازگارند زیرا آن به طور همزمان نمی توانند رخ دهند.
هر گاه دو پیشامد مانند E1 و E2، دستگاه کامل پیشامد ها را تشکیل دهند هر یک از آنها متمم دیگری است به عنوان مثال در انداختن یک سکه ،"شیر" و "خط" متمم اند.

تعریف کلاسیک احتمال

اگر چه نظریه اصل موضوعی احتمال موجود است ، قوانین مهم احتمال را می توان از تعریف کلاسیک آن بدست آورد.

تعریف کلاسیک احتمال : اگر آزمونی بتواند در n پیشامد برابر – محتمل نتیجه شود و اگر m مورد از این پیشامدها برای پیشامد E مطلوب باشند احتمال ظهور پیشامد E عبارت است از:


همواره دو اصل زیر برای احتمال پیشامدهای مختلف برقرار است.

1) همواره عددی بین 0 و1 ست
2) احتمال پیشامد قطعی برابر 1 و احتمال پیشامد نا ممکن برابر صفر است.
احتمال یکی از ابزارهای اساسی علم آمار است که آغاز رسمی آن به قرن هفدهم برمی‌گردد. در این قرن بازیهایی که در آن شانس ، دخالت بسزایی داشته رایج بوده است. این بازیها همان طور که از اسم آن پیداست کارهایی از قبیل چرخاندن چرخ ، ریختن یک تاس ، پرتاب یک سکه و غیره را دربرمی‌گیرد. که در آنها برآمد آزمایش ، قطعی نیست. به هر حال واضح است که حتی با وجود قطعی نبودن برآمد هر آزمایش ویژه به یک برآمد قابل پیش بینی در دراز مدت وجود دارد.

انواع احتمال

احتمال کلاسیک

اگر آزمایشی تصادفی دارای n برآمد ممکن دو به دو ناساگار و هم‌شانس باشد و اگر nA برآمد از این برآمدها حاوی صفت A باشند، آنگاه احتمال A برابر کسر می‌باشد. احتمالهایی که با تعریف کلاسیک احتمال تعیین می‌شوند احتمالهای پیشین نامیده می‌شوند. وقتی بیان می‌کنیم که احتمال بدست آوردن شیر در پرتاب یک سکه 2/1 است، صرفا با استدلال مقیاسی به این نتیجه رسیده‌ایم. برای رسیدن به این نتیجه لازم نیست که هر سکه‌ای پرتاب شود یا حتی موجود باشد.

احتمال پسین یا فراوانی

مثلا در پرتاب یک سکه فراوانی نسبی تعداد شیرها به 2/1 نزدیک است. این مساله دور از انتظار نیست چون سکه متقارن بوده و پیش بینی می‌شد که در تکرار زیاد ، رویه شیر در حدود نیمی از دفعات ظاهر شود. توجه کنید گر چه فراوانیهای نسبی برآمدهای گوناگون قابل پیش بینی هستند ولی برآمد واقعی یک بار پرتاب غیر قابل پیش بینی است. این احتمالهای تجدید نظر شده را احتمالهای پسین یا پس از آزمایش گویند که هر گونه استنباطی در مورد وضعیتهای طبیعی نامعلوم ، باید مبتنی بر آنها باشد.

قواعد کلی احتمال

خواص احتمال مربوط به فضاهای گسسته که در آنها برآمدهای مقدماتی یا متناهی‌اند یا آنها را می‌توان به صورت یک دنباله مرتب نمود. در بسیاری از آزمایشها ، با کمیت پیوسته از قبیل قد ، وزن و درجه حرارت سروکار داریم. در این گونه آزمایشها ، فضای نمونه بدست آمده مرکب از تمام اعداد حقیقی موجود در یک فاصله است و فضای نمونه پیوسته نامیده می‌شود.

بیشتر مطالب مربوط به تعبیر احتمال یک پیشامد به عنوان فراوانی نسبی در تکرار زیاد آزمایشها و بیشتر خواص احتمال ، برای این فضاها نیز معتبرند. مع‌هذا ، در فضای نمونه پیوسته این استثنای قابل ملاحظه وجود دارد که رابطه (P(A)=∑ P(e (به ازای تمام eهای متعلق به A)
فاقد معنی است زیرا برآمدهای مقدماتی e در A نه تنها نامتناهی‌اند بلکه به صورت یک دنباله نیز نمی‌توان آنها را مرتب کرد. در ریاضی ، اگر جمله‌هایی را که باید جمع شوند نتوان به صورت یک دنباله نوشت، عمل جمع تفریق نمی‌شود.

شرایط احتمال

برای تعریف کلی احتمال ، شرایطی را بیان می‌کنیم که هر عددی که به عنوان احتمال به یک پیشامد منسوب می‌شود باید آن شرایط را داشته باشد. این شرایط با توجه به رفتار فراوانیهای نسبی تعیین شده است و منطبق بر خواص احتمال در فضاهای گسسته است.
  • احتمال P ، تابعی است با مقادیر عددی که روی پیشامدهای موجود در یک فضای نمونه S تعریف می‌شود و در شرایط زیر صدق می‌کند.
الف) برای تمام پیشامدهای 0≤P(A)≤1,A
ب) P(S)=1 (احتمال پیشامد فضای نمونه برابر 1 است)
ج) برای پیشامدهای جدا از هم A1 ، A2 و ...

... + (P(A1 U A2 U …) = P(A1) + P(A2


برای یافتن قاعده متمم گیری ، توجه کنید که A و Á دو پیشامد جدا از هم هستند و A U Á = S

سه قانون مهم احتمال برای یک فضای نمونه در حالت کلی

(P(A) = 1 - P(Á

(P(AUB) = P(A) + P(B) - P(A∩B) = P(A) + P(B) - P(AB

(P(A∩B) = P(AB) = P(B) P(A|B

P(A U Á)= P(A) + P(Á) = P(S) = 1

(P(AUBUC) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC

احتمالهای اصل موضوعی

دو نوع کلی احتمال (پیشین و پسین) دارای نکته مشترکی هستند: هر دوی آنها به آزمایشی خیالی نیاز دارند که برآمدهای گوناگون در این آزمایشها بتوانند تحت شرایط نسبتا یکنواخت رخ دهند. برای مثال پرتابهای مکرر یک سکه برای حالت پیشین و زاد و ولدهای مکرر برای حالت پسین را می‌توان نام برد. اما ممکن است بخواهیم مواردی را به دنیای نظریه احتمال وارد کنیم که قرار دادن آنها در چارچوب برآمدهای مکرری که تا اندازه‌ای دارای شرایط یکسانند قابل درک نمی‌باشد.

مثلا ممکن است علاقمند باشیم به پرسشهایی از قبیل ، احتمال این که جنگ جهانی سوم قبل از تاریخ معینی شروع شود، پاسخ دهیم. این نوع مسایل تنها پرسشهای به جا در نظریه احتمال عمومی هستند که در آنچه به آن احتمال ذهنی اطلاق می‌شود گنجانده شده‌اند. هر برآمد ممکن یک آزمایش طرح ریزی شده تحت بررسی را نقطه نمونه و مجموعه کلیه برآمدهای ممکن (یا نقاط نمونه) را فضای نمونه می‌نامیم.

تعریف احتمال شرطی

احتمال شرطی A به شرط B با (P(A│B نشان داده می‌شود و با فرمول

(P(A│B) = P(AB)/P(B


تعریف می‌گردد، که در آن P(B)>0 این فرمول را می‌توان به صورت زیر نوشت:

(P(AB) = P(B) P(A│B


که آن قانون ضرب احتمالها گوییم. به همین نحو ، احتمال شرطی B به شرط A را می‌توان به صورت زیر بیان کرد:

(P(B│A) = P(AB)/P(A



که منجر به رابطه (P(AB) = P(A) P(B|A می‌شود. بنابراین قانون ضرب احتمالها این تساوی را بیان می‌کند که حاصلضرب احتمال شرطی یک پیشامد در احتمال پیشامد شرطی کننده ، برابر است با احتمال اشتراک آن دو پیشامد.

دید کلی

اغلب لازم می‌آید که احتمال پیشامدی چون A، که با پیشامدی مانند B مربوط است، بعد از الاع بر وقوع یا عدم وقوع پیشامد B ، اصلاح گردد. بنابراین کسب اطلاعات درباره جنبه‌ای از نتایج آزمایش ، ممکن است تجدید نظر در احتمال پیشامدی را که مربوط به جنبه دیکری از نتایج است، ایجاد کند. اجتمال تجدید نظر شده A ، وقتی معلوم شود که B رخ داده است، احتمال شرطی A به شرط B نامیده و با (P(A│B نشان داده می‌شود.

احتمال شرطی برای 3 پیشامد

قانون ضرب را می‌توان برای بیش از دو پیشامد نیز تعمیم داد. در مورد سه پیشامد A ، B و C ، فرمول عبارت است از:

(P(ABC)=P(A) P(B|A) P(C|AB


 

احتمال شرطی برای دو پیشامد مستقل

اگر دو پیشامد A و B مستقل باشند آنگاه احتمال شرطی به صورت زیر است:

(P(A|B)=P(A


شرطهای زیر ، هم ارز شرط بالا هستند:

(P(B|A) = P(B یا (P(AB) = P(A) P(B


با توجه به شرط استقلال اگر آزمایشی مرکب از دو قسمت فیزیکی مستقل و نامربوط به هم باشد، و پیشامد A و B به قسمتهای جداگانه آن آزمایش مربوط شوند، به پیشامد AB احتمال (P(AB) = P(A) P(B را نسبت می‌دهیم.

تفاوت "پیشامدهای دو به دو ناسازگار" و پیشامدهای مستقل"

این دو خاصیت کاملا متفاوت هستند؛ در حقیقت ، برقراری یکی منجر می‌شود به این که دیگری نتواند برقرار باشد. پیشامدهای A و B را که دارای احتمال های غیر صفرند در نظر بگیرید. وقتی آنها دو به دو ناسازگارند، اشتراک AB تهی است و P(AB) = 0. اگر این پیشامدها مستقل نیز باشند، می‌بایستی در شرط (P(A) P(B) = P(AB صدق کنند، که این موضوع نمی‌تواند درست باشد چون حاصلضرب دو عدد غیر صفر نمی‌تواند صفر باشد. به عنوان مثال ، پیشامدهای A و Á دو به دو ناسازگارند ولی بطور شهودی معلوم است که کاملا وابسته‌اند، به این معنی که به محض وقوع پیشامد A ، مطمئن هستیم که Á رخ نمی‌دهد.

قضیه بیز

قضیه بیز به صورت زیر است:

(P(B1│A) = P(B1) P(A|B1) / ∑ P(Bj) P(A|Bj



این فرمول بوسیله دیوراند تامس بیز (1702-1761) در معرض توجه عموم قرار داده شده و بنابراین به عنوان قضیه بیز معروف است. اگرچه این قضیه نتیجه‌ای مستقیم از مفهوم احتمال شرطی است، ولی دارای مفاهیم ضمنی دیگری است که در نگرش معینی به استنباط آماری موسوم به استنباط بیزی ، بکار می‌آید. این نحوه استنباط ، مبتنی بر این تعبیر است که Bjها عبارتند از "وضعیتهای طبیعی" ممکن ، که محقق احتمالهای ذهنی به آنها نسبت می‌دهد. این احتمالها که ممکن است بر مبنای احساس شخصی و نه از روی داده‌ها تعیین شوند (در حقیقت امکان دارد داده‌ها را بطور کلی در دست نداشته باشیم)، سپس با گواه آزمایشی A ترکیب می‌شوند.

احتمال پیشین و پسین

در ابتدا ، محقق از چند وضعیت طبیعی ممکن B1 ، B2 ، ... ، BK با اطلاع است ولی دقیقا نمی‌داند که کدامیک از آنها براستی پیش می‌آید. مثلا ، برای یک داروساز ، دو وضعیت طبیعی نامعلوم ، می‌تواند موثرتر بودن یا موثرتر نبودن یک دارو نسبت به داروی دیگر باشد، برای یک آژانس تبلیغاتی ، امکان دارد وضعیتهای طبیعی ، اثرات ترکیبات مختلف رنگها در یک نمایش تبلیغاتی باشد.

احتمال پیشین

بر مبنای دانش موجود درباره وضعیت ، یا براساس یک گواه آزمایشی که از وضعیتهای مشابه بدست آمده است، محقق ممکن است درباره احتمالهای (P(B) ، P(B) ، ... ، P(B ارزیابی‌ هایی نماید که در واقع بازتابی از احساس شخصی او در مورد میزان تحمل بودن هر یک از وضعیتهای طبیعی است. چنین احتمالهایی را احتمالهای پیشین یا پیش از آزمایش ، برای وضعیتهای طبیعی گویند.

احتمال پسین

بعد از این کار ، محقق به انجام مشاهده یا اجرای آزمایش می‌پردازد و داده‌ها را گردآوری می‌کند. او می‌تواند احتمال گواه آزمایشی A را به شرط وقوع هر وضعیت مشهود B تعغیین کند، آنگاه قضیه بیز به محقق امکان می‌دهد که احتمالهای شرطی (P(B|A)، (j=1,…,K را محاسبه نماید، که این مار ، چیزی نیست چز نوعی تجدید نظر در احتمالهای وضعیتهای طبیعی مختلف ، بعد از بدست آمدن گواه آزمایشی. این احتمالهای تجدید نظر شده را احتمالهای پسین یا پس از آزمایش گویند؛ که هر گونه استنباطی در مورد وضعیتهای طبیعی نامعلوم ، باید مبتنی بر آنها باشد.

این روش استدلال ، از سوی بعضی مکتبهای فکری مورد این انتقاد قرار گرفته است که احتمالهای پیشین ممکن است تحت تاثیر نظرگاههای انحرافی محقق قرار داشته باشند. در عین حال ، پژوهشگران در بسیاری از رشته‌ها ، از قبیل حسابداری ، اقتصاد ، تعلیم و تربیت و غیره از این روش ستایش کرده‌اند.

توزیع‌های احتمال
 

مقدمه

وقتی یک جفت تاس را می‌ریزیم، معمولا فقط مجموع دو شماره‌ای که ظاهر می‌شوند مورد توجه است و نه برآمد هر تاس. وقتی از لامپهای روشنایی که در سطح انبوه تولید می‌شوند نمونه می‌گیریم ممکن است دوام یا میزان روشنایی آنها مورد توجه باشد و نه بهای آنها. تابع توزیع یک متغیر تصادفی چون x به ما این امکان را می‌دهد که مطالعه مان را روی تمام مقادیر حوزه تابع گسترش دهیم و هر آنچه را که می‌خواهیم بدست آوریم.

تعریف

اگر S یک فضای نمونه‌ای با یک اندازه احتمال ، و X یک تابع حقیقی - مقدار باشد که روی عناصر S تعریف شده است، آنگاه X را یک متغیر تصادفی می‌نامیم.



اگر X یک متغیر تصادفی گسسته باشد، تابعی که برای هر مقدار x در برد X با f(x) = p(X) = x داده می‌شود، توزیع احتمال X نامیده می‌شود.

شرایط تابع توزیع احتمال

تابعی را می‌توان وقتی و فقط وقتی به عنوان توزیع احتمال یک متغیر تصادفی گسسته X به کاربرد که مقادیر آن ، (f(x ، در شرایط زیر صادق باشند:
  • برای هر مقدار حوزه تابع: f(x)≥0؛ که در آن مجموع‌یابی روی تمام مقادیر حوزه تابع صورت می‌گیرد. در مسائل زیادی ، دانستن احتمال اینکه مقداری از متغیر تصادفی کوچکتر از یک مقدار حقیقی x یا برابر با آن باشد مورد توجه است. لذا احتمال این را که X مقداری کوچکتر از x یا برابر با آن اختیار کند به صورت (F(x)=P(X≤x می‌نویسیم و این تابع را که برای تمام اعداد حقیقی x تعریف شده است. تابع توزیع یا توزیع تجمعی متغیر تصادفی X می‌نامیم. که در آن:

(F(x) = f(X≤x

(f(t در عبارت بالا مقدار احتمال X به ازای t است. عبارت بالا در شرایطی درست است که X یک متغیر تصادفی گسسته باشد برای حالت پیوسته از انتگرال به جای سیگما استفاده می‌کنیم. تابع توزیع دارای شرایطی است که عبارتند از:


1)F(∞)=1 , F(-∞)=0
2)به ازای هر دو عدد حقیقی b,a اگر a
برای بدست آوردن توزیع احتمال از روی تابع توزیع احتمال کافی است از تابع توزیع نسبت به x مشتق اول بگیرید یا برعکس برای بدست آوردن تابع توزیع احتمال از روی توزیع احتمال کافی است نسبت به x از توزیع احتمال انتگرال بگیریم. این مطالب برای هر دو حالت پیوسته و گسسته صادق است. در بسیاری از موارد با وضعیتهایی روبه‌رو می‌شویم که یک جفت متغیر تصادفی یا چند متغیر تصادفی به طور همزمان روی فضای نمونه‌ای توأم تعریف شده‌اند در این حالت شرایط زیاد تغییر نمی‌کند. در حالت گسسته به تعداد متغیرها سیگار در حالت پیوسته انتگرال خواهیم داشت. در ارتباط با توزیعهای احتمال باید ذکر کنیم که برخی از این توزیعها در نظریه آمار و در کاربردهای آن بصورت بسیار چشمگیری ظاهر می‌شوند. مثل مواقعی که برای ما واجب است بدانیم احتمال پیروزیها در یک مسابقه به چه نحوی تعیین می‌شود. یا اولین پیروزی در x امین امتحان با چه وضعیتی آشکار خواهد شد و ... .

توزیع برنولی

اگر آزمایش دو برآمد داشته باشد "پیروزی" و "شکست" و احتمال آنها به ترتیب θ و θ - 1 باشد آنگاه تعداد پیروزیها یعنی 0 یا 1 ، توزیع برنولی دارد و بصورت نمادی زیر نمایش داده می‌شود:


1 یا 0=xf(x;θ) = θx(1-θ)1 - x

میانگین و واریانس توزیع برنولی به ترتیب θ و θ-1) θ) می‌باشد.

توزیع دوجمله‌ای

احتمال مطلوب برای "x پیروزی در n امتحان" توسط توزیع دو جمله‌ای تأمین می‌گردد که احتمال آن بصورت زیر بدست می‌آید:


میانگین و واریانس توزیع دوجمله ای به ترتیب θn و θ-1)θn) است.

توزیع پواسون

در توزیع دوجمله‌ای هرگاه n بزرگ باشد و θ به سمت صفر میل کند احتمال x پیروزی در n امتحان به توزیع پواسون با پارامتر λ میل می کند که در آن λ=nθ است. میانگین و واریانس توزیع پواسون هر دو با λ برابر است. گر چه توزیع پواسون بصورت شکل حدی توزیع دوجمله‌ای حاصل شده است، ولی کاربردهای فراوانی دارد که شاید در بسیاری از مواقع رابطه مستقیمی با توزیع دوجمله‌ای نداشته باشد. مثلا توزیع پواسون را می‌توان به عنوان مدلی برای تعداد پیروزیهایی که در طول فاصله زمانی مفروض یا در ناحیه مشخصی رخ می‌دهند به کاربرد به شرط آنکه:
1- تعداد پیروزیها در فاصله زمانی یا در ناحیه‌های نامتداخل مستقل باشند.
2- احتمال رخ داد تنها یک پیروزی در هر فاصله زمانی کوتاه یا در هر ناحیه کوچک متناسب با طول فاصله زمانی یا اندازه ناحیه باشد.
3- احتمال رخداد بیش از یک پیروزی در چنین فاصله زمانی کوتاه یا قرار گرفتن در چنین ناحیه ای کوچک ، ناچیز باشد. بنابراین توزیع پواسون می تواند تعداد مطالعات تلفنی اداره ای را در یک ساعت مشخصی ، تعداد خطاهای تایپی را در یک صفحه و ... را به ما بدهد.

توزیع نمایی

برای پیدا کردن تعداد پیروزیها در فاصله زمانی مفروض برای متغیر تصادفی X از توزیع پواسون استفاده کردیم. توزیع نمایی چگالی احتمال متغیر تصادفی پیوسته y است که زمان انتظار تا اولین پیروزی را به ما می دهد در این صورت توزیع نمایی با فرض λ=1/θ یا λ=α به شکل زیر در می‌آید:

توزیع نرمال

متغیر تصادفی X دارای توزیع نرمال است اگر و تنها اگر چگالی احتمال آن بصورت زیر باشد:


در تعریف فوق هرگاه 0=μ و 1=σ باشد توزیع نرمال استاندارد نامیده می شود. در توزیع دوجمله‌ای وقتی n ، تعداد امتحانها ، خیلی بزرگ باشد و θ ، احتمال پیروزی در یک تک امتحان نزدیک 2/1 باشد با توزیع نرمال تقریب می‌خورد. با افزایش n این تقریب بهتر خواهد شد. برای توزیع نرمال می‌توان گفت اگر X دارای توزبع نرمال با میانگین μ و انحراف معیار σ باشد، آنگاه نرمال استاندارد است.


  • توزیع نرمال در نقطه μ=x دارای Max نسبی است و در x=μ+σ , x=μ-σ دارای نقاط عطف می‌باشد.

 

+ نوشته شده در  88/09/29ساعت   توسط  جهانی پور  | 

كد موسيقي براي وبلاگ